01_基于redis和zookeeper的分布式锁实现原理
1、面试题
一般实现分布式锁都有哪些方式?使用redis如何设计分布式锁?使用zk来设计分布式锁可以吗?这两种分布式锁的实现方式哪种效率比较高?
2、面试官心里分析
其实一般问问题,都是这么问的,先问问你zk,然后其实是要过度的zk关联的一些问题里去,比如分布式锁。因为在分布式系统开发中,分布式锁的使用场景还是很常见的。
3、面试题剖析
(1)redis分布式锁
官方叫做RedLock算法,是redis官方支持的分布式锁算法。
这个分布式锁有3个重要的考量点,互斥(只能有一个客户端获取锁),不能死锁,容错(大部分redis节点或者这个锁就可以加可以释放)
第一个最普通的实现方式,如果就是在redis里创建一个key算加锁
SET my:lock 随机值 NX PX 30000,这个命令就ok,这个的NX的意思就是只有key不存在的时候才会设置成功,PX 30000的意思是30秒后锁自动释放。别人创建的时候如果发现已经有了就不能加锁了。
释放锁就是删除key,但是一般可以用lua脚本删除,判断value一样才删除:
redis执行lua脚本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
|
为啥要用随机值呢?因为如果某个客户端获取到了锁,但是阻塞了很长时间才执行完,此时可能已经自动释放锁了,此时可能别的客户端已经获取到了这个锁,要是你这个时候直接删除key的话会有问题,所以得用随机值加上面的lua脚本来释放锁。
但是这样是肯定不行的。因为如果是普通的redis单实例,那就是单点故障。或者是redis普通主从,那redis主从异步复制,如果主节点挂了,key还没同步到从节点,此时从节点切换为主节点,别人就会拿到锁。
第二个问题,RedLock算法
这个场景是假设有一个redis cluster,有5个redis master实例。然后执行如下步骤获取一把锁:
1)获取当前时间戳,单位是毫秒
2)跟上面类似,轮流尝试在每个master节点上创建锁,过期时间较短,一般就几十毫秒
3)尝试在大多数节点上建立一个锁,比如5个节点就要求是3个节点(n / 2 +1)
4)客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了
5)要是锁建立失败了,那么就依次删除这个锁
6)只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁
(2)zk分布式锁
zk分布式锁,其实可以做的比较简单,就是某个节点尝试创建临时znode,此时创建成功了就获取了这个锁;这个时候别的客户端来创建锁会失败,只能注册个监听器监听这个锁。释放锁就是删除这个znode,一旦释放掉就会通知客户端,然后有一个等待着的客户端就可以再次重新加锁。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
public class ZooKeeperSession {
private static CountDownLatch connectedSemaphore = new CountDownLatch(1);
private ZooKeeper zookeeper;
private CountDownLatch latch;
public ZooKeeperSession() {
try {
this.zookeeper = new ZooKeeper(
"192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181",
50000,
new ZooKeeperWatcher());
try {
connectedSemaphore.await();
} catch(InterruptedException e) {
e.printStackTrace();
}
System.out.println("ZooKeeper session established......");
} catch (Exception e) {
e.printStackTrace();
}
}
public Boolean acquireDistributedLock(Long productId) {
String path = "/product-lock-" + productId;
try {
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
return true;
} catch (Exception e) {
while(true) {
try {
Stat stat = zk.exists(path, true);
if(stat != null) {
this.latch = new CountDownLatch(1);
this.latch.await(waitTime, TimeUnit.MILLISECONDS);
this.latch = null;
}
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
return true;
} catch(Exception e) {
continue;
}
}
}
return true;
}
public void releaseDistributedLock(Long productId) {
String path = "/product-lock-" + productId;
try {
zookeeper.delete(path, -1);
System.out.println("release the lock for product[id=" + productId + "]......");
} catch (Exception e) {
e.printStackTrace();
}
}
private class ZooKeeperWatcher implements Watcher {
public void process(WatchedEvent event) {
System.out.println("Receive watched event: " + event.getState());
if(KeeperState.SyncConnected == event.getState()) {
connectedSemaphore.countDown();
}
if(this.latch != null) {
this.latch.countDown();
}
}
}
private static class Singleton {
private static ZooKeeperSession instance;
static {
instance = new ZooKeeperSession();
}
public static ZooKeeperSession getInstance() {
return instance;
}
}
public static ZooKeeperSession getInstance() {
return Singleton.getInstance();
}
public static void init() {
getInstance();
}
}
|
(3)redis分布式锁和zk分布式锁的对比
redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能
zk分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小
另外一点就是,如果是redis获取锁的那个客户端bug了或者挂了,那么只能等待超时时间之后才能释放锁;而zk的话,因为创建的是临时znode,只要客户端挂了,znode就没了,此时就自动释放锁
redis分布式锁大家每发现好麻烦吗?遍历上锁,计算时间等等。。。zk的分布式锁语义清晰实现简单
所以先不分析太多的东西,就说这两点,我个人实践认为zk的分布式锁比redis的分布式锁牢靠、而且模型简单易用
(4)zookeeper分布式锁实现代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
| public class ZooKeeperDistributedLock implements Watcher{
private ZooKeeper zk;
private String locksRoot= "/locks";
private String productId;
private String waitNode;
private String lockNode;
private CountDownLatch latch;
private CountDownLatch connectedLatch = new CountDownLatch(1);
private int sessionTimeout = 30000;
public ZooKeeperDistributedLock(String productId){
this.productId = productId;
try {
String address = "192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181";
zk = new ZooKeeper(address, sessionTimeout, this);
connectedLatch.await();
} catch (IOException e) {
throw new LockException(e);
} catch (KeeperException e) {
throw new LockException(e);
} catch (InterruptedException e) {
throw new LockException(e);
}
}
public void process(WatchedEvent event) {
if(event.getState()==KeeperState.SyncConnected){
connectedLatch.countDown();
return;
}
if(this.latch != null) {
this.latch.countDown();
}
}
public void acquireDistributedLock() {
try {
if(this.tryLock()){
return;
}
else{
waitForLock(waitNode, sessionTimeout);
}
} catch (KeeperException e) {
throw new LockException(e);
} catch (InterruptedException e) {
throw new LockException(e);
}
}
public boolean tryLock() {
try {
lockNode = zk.create(locksRoot + "/" + productId, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
List<String> locks = zk.getChildren(locksRoot, false);
Collections.sort(locks);
if(lockNode.equals(locksRoot+"/"+ locks.get(0))){
return true;
}
int previousLockIndex = -1;
for(int i = 0; i < locks.size(); i++) {
if(lockNode.equals(locksRoot + “/” + locks.get(i))) {
previousLockIndex = i - 1;
break;
}
}
this.waitNode = locks.get(previousLockIndex);
} catch (KeeperException e) {
throw new LockException(e);
} catch (InterruptedException e) {
throw new LockException(e);
}
return false;
}
private boolean waitForLock(String waitNode, long waitTime) throws InterruptedException, KeeperException {
Stat stat = zk.exists(locksRoot + "/" + waitNode, true);
if(stat != null){
this.latch = new CountDownLatch(1);
this.latch.await(waitTime, TimeUnit.MILLISECONDS); this.latch = null;
}
return true;
}
public void unlock() {
try {
System.out.println("unlock " + lockNode);
zk.delete(lockNode,-1);
lockNode = null;
zk.close();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
}
public class LockException extends RuntimeException {
private static final long serialVersionUID = 1L;
public LockException(String e){
super(e);
}
public LockException(Exception e){
super(e);
}
}
}
|